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Quantum anomalous Hall effect in atomic crystal layers from in-plane magnetization
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We theoretically demonstrate that with in-plane magnetization, the quantum anomalous Hall effect (QAHE) can
be realized in two-dimensional atomic crystal layers with preserved inversion symmetry but broken out-of-plane
mirror reflection symmetry. By taking the honeycomb lattice system as an example, we find that the low-buckled
structure satisfying the symmetry criteria is crucial to induce QAHE. The topologically nontrivial bulk gap
carrying a Chern number of C = ±1 opens in the vicinity of the saddle points M , where the band dispersion
exhibits strong anisotropy. We further show that the QAHE with electrically tunable Chern number can be
achieved in Bernal-stacked multilayer systems, and the applied interlayer potential differences can dramatically
decrease the critical magnetization to make the QAHE experimentally feasible.
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I. INTRODUCTION

The quantum anomalous Hall effect (QAHE), manifesting
itself as quantized Hall conductance and vanishing longitudi-
nal conductance, has attracted broad interest recently [1]. In
analogy to the quantum Hall effect from strong out-of-plane
magnetic field, the QAHE has been intensively studied by
introducing out-of-plane ferromagnetism in various systems,
such as topological insulator thin films [1–6], quantum
wells [7,8], and atomic crystal layers, e.g., honeycomb-lattice
systems [1,9–14]. Experimentally, by using ferromagnetic
insulating substrates, the AHE has been reported in graphene,
though much effort is still required to realize the quantized
counterpart [15–18]. In such systems, a weak magnetic field is
usually required to align the system magnetization that prefers
in-plane orientation. This inspires us to consider whether it is
possible to produce QAHE from in-plane magnetism. So far,
except limited studies in quantum-well structures [7,8], the
QAHE from in-plane magnetization has not been reported in
two-dimensional (2D) atomic crystals.

Starting from symmetry analysis, we investigate the pos-
sibility of realizing QAHE from in-plane magnetization in
atomic crystal layers and show that QAHE can occur when
the inversion symmetry is preserved but the out-of-plane
mirror-reflection symmetry is broken. We show that the QAHE
cannot form in a planar honeycomb lattice, e.g., graphene,
but can be realized in low-buckled honeycomb lattices such
as silicene. With an in-plane magnetization, the topologically
nontrivial bulk gap hosting the QAHE with a Chern number
of C = ±1 opens around M points, the saddle points with
strong anisotropy. This is different from other QAHE systems
from out-of-plane magnetization with band-gap opening at
isotropic Dirac points [1,8,9,12–14,19]. We further show that
in multilayer systems, high Chern numbers can be achieved
and tuned via electric means. The application of vertical
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electric field can dramatically decrease the lowest critical
magnetization, make the QAHE experimentally feasible.

II. SYSTEM HAMILTONIAN

The tight-binding Hamiltonian of a monolayer low-buckled
honeycomb lattice with in-plane magnetization can be ex-
pressed as [12,13]

H = − t
∑

〈ij〉
c
†
i cj + itI

∑

〈〈ij〉〉
νij c

†
i szcj (1)

− itIR
∑

〈〈ij〉〉
μij c

†
i (s × d̂ij )zcj + λ

∑

i

c
†
i m̂ · sci,

where c
†
i = (c†i↑,c

†
i↓)T is the creation operator for an electron at

the ith site with ↑ and ↓ representing spin-up and -down states.
The first term stands for the nearest-neighbor hopping with an
amplitude of t , and the second term is the intrinsic spin-orbit
coupling (SOC), where νij = di × dj /|di × dj | with di,j

being the two nearest bonds connecting next-nearest-neighbor
sites. These two terms correspond to the Hamiltonian of
a planar honeycomb lattice with preserved mirror-reflection
symmetry (i.e., z → −z). This symmetry can be broken in
the low-buckled structure, which is reflected by the intrinsic-
Rashba SOC HIR displayed as the third term where μij = ±1
for A/B sublattices, s are spin-Pauli matrices, and d̂ij is a unit
vector from site j to i. The last term represents the in-plane
magnetization, with the strength and orientation, respectively,
being λ and m̂ = (cos φ, sin φ,0).

III. SYMMETRY ANALYSIS

We begin from the symmetry analysis of the Hamiltonian
and corresponding Berry curvature �n(k) = �z

n(k)ẑ based on
the anomalous velocity in the presence of in-plane electric
field E [20,21],

vn(k) = ∂εn(k)

�∂k
− e

�
E × �n(k). (2)
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TABLE I. Parity of in-plane (out-of-plane) magnetization H‖
(H⊥), intrinsic (extrinsic) Rashba SOC HIR (HER), staggered AB
sublattice potentials HAB , velocity v, momentum k, and electric field
E under the symmetric operations of time reversal T , out-of-plane
mirror reflectionMz, and inversion I. +/− indicates even/odd parity.
See more details of each term in the Supplemental Material [21].

H‖ H⊥ HIR HER HAB v k E

T − − + + + − − +
Mz − + − − + + + +
I + + + − − − − −

The integration of �z
n(k) over the first Brillouin zone gives the

Chern number that characterizes the topological property of
the nth band [20,22]. We focus on the operations of inversion
I, time reversal T , and out-of-plane mirror reflection Mz (i.e.,
z → −z). Under these operations, the parities of velocity v,
momentum k, and electric field E are listed in Table I. We first
consider a planar honeycomb lattice with vanishing intrinsic-
Rashba SOC, which is invariant under these three operations.
In this consideration, the introduction of in-plane magnetiza-
tion, which has odd parities under both T and Mz operations
and even parity under inversion I, cannot break the invariance
of the system under the joint operation of T ⊗ Mz ⊗ I. The
preservation of this symmetry gives vanishing �z

n(k) [21].
To generate nonzero Berry curvature, the joint symmetry

of T ⊗ Mz ⊗ I must be broken. One potential approach is
to break the inversion symmetry I by introducing staggered
sublattice potential HAB [21], which, however, is invariant
under the operation of T ⊗ Mz. This requires that �z

n(k) is
an odd function of momentum k, and results in a vanishing
Chern number [21,23]. Therefore, one can conclude that
the symmetries of the system under both T ⊗ Mz ⊗ I and
T ⊗ Mz should be simultaneously broken to induce nonzero
Chern number. We find that this symmetry criteria can be
satisfied by introducing intrinsic-Rashba SOC in the low-
buckled structures, which is odd under Mz while invariant
under the inversion I operation. Thus, its combination with
in-plane magnetization as shown in Eq. (1) breaks both
symmetries of T ⊗ Mz and T ⊗ Mz ⊗ I, leading to nonzero
Berry curvature that is an even function of momentum.
Therefore, nonzero Berry-curvature integration may lead to
QAHE in insulator and AHE in metal. These analyses are
consistent with that in Ref. [23].

In addition to the intrinsic-Rashba SOC, the extrinsic-
Rashba SOC HER from structural inversion asymmetry, e.g.,
from the substrate, also has the odd parity under mirror-
reflection Mz. However, different from the intrinsic one, it
is odd under inversion I operation. Therefore, its combination
with in-plane magnetization preserves the joint symmetry of
T ⊗ Mz ⊗ I, leading to zero Berry curvature. In contrast
to the in-plane one, the out-of-plane magnetization itself
breaks both the joint symmetries of T ⊗ Mz ⊗ I and T ⊗
Mz simultaneously. Thus, together with either intrinsic- or
extrinsic-Rashba SOC, it can lead to nonzero Berry curvature,
which is an even function of k guaranteed by the invariance
under the operation of either I or Mz ⊗ I [9,13]. Such
differences between in-plane and out-of-plane magnetizations
in symmetry clearly distinguish our proposed mechanism from

other reported ones. Below, we numerically demonstrate the
QAHE from in-plane magnetization in low-buckled honey-
comb lattice.

IV. MONOLAYER SYSTEM

We first calculate the band structure with the magnetization
orientation being φ = π/6 [21]. At λ = 0, a band gap opens
at valleys K/K ′ [see Fig. 1(a)], harboring a 2D Z2 topological
insulator [24]. When a nonzero magnetization λ < t is applied,
the doubly degenerate bands become split into two species,
as highlighted in blue and red, which are characterized by
different band gaps 	1 and 	2, as displayed in Fig. 1(b).
This insulating phase with broken time-reversal symmetry
is topologically trivial with C = 0 [20–22] and an absence
of gapless edge modes [Fig. 1(g)]. When the magnetization
reaches a critical value of λ = t , the band gap 	1 is nearly
unchanged while 	2 is closed at M points, as displayed in
Fig. 1(c). For even larger magnetization strength, e.g., λ > t ,
the degeneracy at the saddle points M is lifted and the band gap
	2 reopens, which changes the Berry-curvature distribution,
as shown in Fig. 1(f). One can find that the Berry curvature
is negative for M1 and M3, but positive for M2 giving rise to
a negative Chern number C = −1, indicating the formation of
QAHE. This can be further confirmed by the emergence of
chiral gapless edge modes (in red), as displayed in Fig. 1(h).

We further study the dependence of the topological phase
on the magnetization orientation. Figure 2(a) displays the
band gap as well as the corresponding topological phases
in the mx-my plane with (mx,my) = λ(cos φ, sin φ). The
white dot denotes the Z2 topological insulator phase at λ = 0.
For λ < t , the insulating phase with vanishing Chern number
C = 0 occurs, independent of magnetization orientation. The
increase of magnetization drives the band-gap closing at λ = t ,
but reopening for λ > t to host QAHE characterized by
Chern numbers of C = ±1, as labeled in Fig. 2(a) [9,21].
Different from the case of λ < t , the reopened band gap is
strongly dependent on the magnetization orientation φ and
vanishes at φ = nπ/3 (n = 0–5), as highlighted by dashed
lines separating QAHEs with opposite Chern numbers of
C = ±1. This dependence of Chern number on φ is consistent
with the symmetry analysis in Refs. [7] and [25].

Here, we stress that the intrinsic-Rashba SOC in the low-
buckled structure plays an important role in reopening the
band gap 	2. As shown in Fig. 2(b), the amplitude of the
intrinsic SOC is momentum dependent and vanishes at high-
symmetric lines connecting 
 and M points, as denoted by
purple dashed lines. In the absence of intrinsic-Rashba SOC,
this feature leads to the formation of Dirac points at 
-M lines
whenever the magnetization λ > t . Thus, the QAHE cannot
form without intrinsic-Rashba SOC. To better demonstrate
this finding, the low-energy effective Hamiltonians around M

points are provided as

hM1 (q,φ) = +[mσz + aσx + b(φ)σy],

hM2 (q,φ) = −[mσz + aσx + b(φ + π/3)σy], (3)

hM3 (q,φ) = −[mσz + aσx + b(φ − π/3)σy],

where the unit of momentum is set to be 1/
√

3a0, with a0

being the nearest-neighbor distance. σx,y,z are Pauli matrices
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FIG. 1. (a)–(d): Band structures of low-buckled honeycomb lattice in the presence of different in-plane magnetization strengths of λ/t =
(a) 0.0, (b) 0.5, (c) 1.0, and (d) 1.5 at the orientation of φ = π/6. With the increase of λ, a topological phase transition occurs accompanied by
a bulk band-gap (c) closing and (d) reopening. (e),(f) Berry-curvature distribution in the Brillouin zone for the insulating states shown in (b)
and (d). (g),(h) The corresponding zigzag-ribbon band structures for the systems shown in (b) and (d). (f) Red lines highlight the chiral gapless
edge modes of the QAHE. In our calculations, the SOCs are chosen to be tI = tIR = 0.03t .

and the mass term m = −δλ + t(3q2
y − q2

x )/4 shows strong
anisotropic momentum dependence on δλ = λ − t . a = 4qxtI
and b = tIR(3qy sin φ − qx cos φ) are separately contributed
from intrinsic and intrinsic-Rashba SOCs giving rise to x and
y components of the spin texture [21]. In the absence of either
term, the band gap cannot reopen when δλ > 0. Moreover,
without intrinsic-Rashba SOC, the angular dependence
disappears since the angle φ is related to tIR. It is noteworthy
that in our systems considered, the symmetry, anisotropy, and
the angle-dependent Chern number carried by each M point
[21] are completely different from those reported previously
[2,9,19].

V. MULTILAYER SYSTEMS

So far, we have shown that the in-plane magnetization-
induced QAHE can be formed in a low-buckled monolayer

FIG. 2. (a) Phase diagram of the low-buckled honeycomb lattice
with (mx,my) = λ(cos φ, sin φ). The white dot at the center indicates
the 2D Z2 topological insulator at λ = 0. When 0 < λ < t , the
system is a trivial insulator. When λ > t , the system is a QAHE
with alternating Chern numbers C = ±1. Dashed lines indicate the
phase boundaries. (b) Contour plot of the amplitude of intrinsic SOC
in momentum space. The first Brillouin zone is denoted by solid lines,
and the intrinsic SOC vanishes along dashed lines. In our calculation,
the SOCs are chosen to be tI = tIR = 0.03t .

honeycomb-lattice system. However, a daunting challenge for
realizing this QAHE is the extremely large magnetization that
is comparable to the hopping energy t . Below, we show that
the lowest critical magnetization for realizing QAHE can be
dramatically decreased in multilayer systems. Let us first take
the bilayer system as an example and adopt the same SOC
parameters as those in monolayer cases [21]. We display the
bulk band structures for different λ and φ, and find that
the band gap shows the same angular dependence as that
of the monolayer system [see Fig. 3(a)]. The band gap also
closes at M1,2,3 points when topological phase transitions
occur [21]. However, different from a monolayer system,
additional topological phases with Chern numbers of C = ±2
arise. Moreover, a topological phase transition from C = 0
to C = ±1 appears at the critical magnetization λC1 � 0.8t ,
which is smaller than that in the monolayer case.

The presence of layer degree of freedom allows that λC1

can be further reduced by applying an interlayer potential
difference U via an electric field. As displayed in Fig. 3(b),
we find that the increase of U can dramatically decrease
the critical magnetization λC1 , while correspondingly enlarges
λC2 that separates the topological phases of C = ±1 and ±2.
Therefore, the QAHE with C = ±1 can be achieved at a rather
smaller magnetization in the presence of a sizable electric-field
strength. In addition, the dependence of λC1,2 on interlayer
potential difference also makes it possible to realize the QAHE
with electrically tunable Chern numbers. The inset of Fig. 3(b)
shows that the topological phase transitions are independent
of the amplitudes of SOCs.

The cases for Bernal-stacked multilayer systems are similar
to those in the bilayer one. As highlighted by solid lines
in Fig. 3(c), large-Chern-number QAHEs appear for n-layer
systems as the magnetization λ increases with an upper limit
of C = n. When U is applied, the critical magnetization
is decreased (increased) for small- (large-)Chern-number
QAHEs [see dashed lines in Fig. 3(c)]. For λC1 , the lowest
magnetization to induce the QAHE with C = ±1, we find that
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FIG. 3. (a) Phase diagram of the bilayer low-buckled honeycomb
lattice in the mx-my plane. Dashed lines indicate the phase boundaries.
Chern numbers are labeled in the QAHE regions accordingly.
(b) Evolution of critical phase boundaries λC1,C2 as a function of
the interlayer potential difference. (c) Chern number C as a function
of the amplitude of magnetization λ at fixed φ = −π/6 for different
layers. Solid and dashed curves correspond to U = 0 and U = 0.05t ,
respectively. (d) The lowest critical magnetization amplitude to
induce the QAHE of C = ±1 as a function of the layer number n at
fixed φ = −π/6 for different potential differences. In our calculation,
the SOCs are chosen to be tI = tIR = 0.03t .

it decreases slowly as the layer thickness increases for U = 0,
as shown by the light blue line in Fig. 3(d). When U gradually
increases, λC1 can be greatly decreased for multilayer systems,
as illustrated in Fig. 3(d). These findings strongly indicate
that a multilayer low-buckled honeycomb-lattice system under
proper electric field is a more ideal and more experimentally
feasible platform to realize the in-plane magnetization-induced
QAHE.

VI. SUMMARY AND DISCUSSIONS

In this paper, by using symmetry analysis, we have
theoretically revealed that in 2D systems, nonzero Chern
number can only occur in systems with broken symmetries
of T ⊗ Mz ⊗ I and T ⊗ Mz. Both symmetries can be
simultaneously broken by the out-of-plane magnetization,
while preserved by the in-plane one. This makes the QAHE
from in-plane magnetization only possible in systems with
certain constraints, such as the atomic crystal layers with
preserved inversion symmetry but broken mirror-reflection
symmetry. Such differences between in-plane and out-of-plane
magnetizations in symmetry distinguish our proposed QAHE
mechanism from the previous ones. We numerically verified
the realization of QAHE in low-buckled honeycomb lattice,
where the band gap hosting the QAHE opens in the vicinity of

time-reversal symmetric M points exhibiting strong anisotropy
and harbors magnetization-orientation-dependent noninteger
Chern number.

Experimentally, the in-plane magnetization could be intro-
duced by applying an in-plane magnetic field that cannot form
Landau levels in the ultrathin films or proximately coupling
with ferromagnetic insulating substrates [15,16], where a sym-
metric setup with the low-buckled honeycomb-lattice system
sandwiched by two identical ferromagnetic insulating layers
is required to eliminate the influence of extrinsic-Rashba SOC
that is detrimental to the QAHE from in-plane magnetization
[21]. However, the extremely large magnetization strength
required, i.e., λC1 = t , makes the experimental realization of
the QAHE in a monolayer system difficult. There are two
possible ways to overcome this difficulty. One is to decrease
the nearest-neighbor hopping energy t by, e.g., construct-
ing an artificial organometallic material with low-buckled
honeycomb structure, where the effective nearest-neighbor
hopping energy t is relatively weak and the exchange field
is rather strong and can even be much larger than t [26]. The
other one is to consider Bernal-stacked multilayer systems,
where the critical magnetization λC1 gradually decreases
along with the increase of system thickness and could be
further dramatically reduced by applying interlayer potential
differences via a vertical electric field. Our studies together
with the recent experimental realization of Bernal-stacked
multilayer silicene [27–30] strongly suggest the QAHE from
in-plane magnetization could be experimentally achievable in
such system with a perpendicular electric field.

Apart from the half-filled low-buckled honeycomb lattice
(e.g., silicene, gemanene, and stanene), there are plenty
of atomic crystal layers satisfying the symmetry criteria
discussed above, such as organometallic materials, bismuth
bilayer, black and blue phersphorene [1]. The QAHE from
in-plane magnetization may also be realized in these systems
and their hybridized structures, where the magnetization
required may be small enough to be experimentally feasible.
Furthermore, such symmetry analysis on Berry curvature is
not limited to QAHE. With nonzero Berry curvature that is an
even function of momentum, the AHE is also expected in a
metallic system with in-plane magnetization.
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